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Abstract

An elliptic curve over C can be described either by an equation of
the form y2 = x3 + ax+ b where a and b are complex constants satisfying
4a3+27b3 6= 0, or as a torus C/L, where L is some lattice. The connection
between these two ways of viewing an elliptic curve is explained through
the theory of elliptic functions. Some concepts from complex analysis are
recalled when needed.

These notes correspond to two talks given by the author on July 18 and
25, 2013, accounting for some helpful comments by Jim Morrow and Jerry
Li. The original purpose was to make another project, which exclusively
uses the torus form of elliptic curves, less impenetrable. Although that
project ran into trouble, this material is still worth presenting, even if
only as a demonstration of some beautiful complex analysis.

1 Liouville’s Theorems

We give a basic, but non-trivial, introduction to elliptic functions through
Joseph Liouville’s three theorems about the behavior of a general elliptic func-
tion. Before presenting these, we define elliptic functions and two ancillary
concepts.

1.1 Definition. A subset L ⊂ C is a lattice if there exist independent ω1 and
ω2 such that L can be written as {mω1 + nω2 : n,m ∈ Z}. The torus C/L
corresponding to the lattice L is formally the quotient of C by the additive
subgroup L.

The terminology “torus” comes from considering a parallelogram such as P
in Figure 1 and identifying the two edges in each pair of opposite edges with one
another. A common visualization aid is forming a piece of paper into a cylinder,
and then connecting the two boundary circles together.

1.2 Definition. A function f : C → C ∪ {∞} is meromorphic if f−1(∞), the
set of points where f is infinite, is discrete; f is complex differentiable when
restricted to C \ f−1(∞); and the points in f−1(∞) are poles of this restriction,
rather than essential singularities.
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Figure 1: The parallelogram P = {ω1t1 + ω2t2 : t1, t2 ∈ [0, 1]}.

The meromorphic functions on C form a field.

1.3 Definition. A function f : C → C ∪ {∞} is an elliptic function if it is
meromorphic and there exists a lattice L such that f(z+ω) = f(z) for all z ∈ C
and all ω ∈ L. The domain of such a function can also be considered C/L.

The elliptic functions for a given lattice L also form a field.

1.4 Theorem (First Liouville Theorem). If an elliptic function has no poles,
then it is constant.

Proof. Let f be such an elliptic function, in which case it is complex differen-
tiable, and therefore continuous, on all of C. A continuous function on the closed
bounded region P must be bounded. Since f takes on each of its values at least
once in this region, f is bounded on all of C. Finally, Liouville’s theorem from
complex analysis says that any function that is both complex differentiable on
all of C and bounded must be constant.

The Liouville’s theorem used in the preceding proof is originally due to
Augustin–Louis Cauchy, and Liouville’s name became attached to it precisely
because of his interest in it through Theorem 1.4 [3, 1].

The statement of the next theorem involves residues.

1.5 Definition. The residue Res(f, z0) of a function f at a pole z0 is the
complex number given by

1

2πi

‰
γ

f(z)dz,

where γ is a contour that winds once around z0 counterclockwise and encloses
no other poles of f . In complex analysis, it is shown that this is also equal to
the coefficient a−1 in the series for f around z0,

f(z) =

∞∑
n=−∞

an(z − z0)n.

1.6 Theorem (Second Liouville Theorem). An elliptic function f always has
finitely many poles modulo its associated lattice L, and the sum of their residues
is zero.
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Proof. For the first half, simply note that the intersection of a discrete set with
a compact set must be finite. For the second half, consider the parallelogram
Q = {z0 + ω1t1 + ω2t2 : t1, t2 ∈ [0, 1)}, where z0 is chosen so that there are no
poles of f on the boundary of Q. By evaluating

‰
∂Q

f(z)dz

in two different ways, we will show that the sum of the residues of f is zero.
First, this integral is the sum of the residues of the poles inside Q due to the
residue theorem from complex analysis, and second, it is zero simply due to
symmetry.

1.7 Theorem (Third Liouville Theorem). A non-constant elliptic function f
always has the same number of zeros modulo its associated lattice L as it does
poles, counting multiplicites of zeros and orders of poles.

Proof. Consider the function f ′/f , which is also an elliptic function with as-
sociated lattice L. We will evaluate the sum of the residues of this function
in two different ways. By Theorem 1.6, this sum is zero, and by the argument
principle from complex analysis, it is precisely the number of zeros of f counting
multiplicities minus the number of poles of f counting orders.

1.8 Corollary. A non-constant elliptic function f always takes on every value
in C ∪ {∞} the same number of times modulo L, counting multiplicities in the
appropriate sense.

Proof. Given a complex value b, consider the function f − b. This function is
also an elliptic function, and one with the same poles as f . By Theorem 1.6, it
therefore has the same number of zeros as f . Thus, f must take on the value b
as many times as it does 0.

1.9 Definition. If f − b in the previous proof has a multiple root, then b is
called a ramification point of f .

1.10 Corollary. A non-constant elliptic function f always has finitely many
ramification points.

Proof. Ramification points correspond to zeros of f ′, which is also an elliptic
function, and therefore has finitely many zeros by Theorems 1.6 and 1.7.
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2 The Weierstrass ℘ Function

We explicitly show how to get from the description of an elliptic curve as a torus
C/L to the description as an equation y2 = x3 + ax + b. The basic idea is to
construct an elliptic function whose associated lattice is L, and which satisfies
a differential equation that essentially looks like y2 = x3 + ax+ b.

2.1 Definition. The order of an elliptic function is the number of poles counting
orders, modulo its lattice.

By Theorems 1.6 and 1.7, the order is also the number of zeros counting mul-
tiplicities, and also the number of times any other value is taken on, accounting
for ramification points.

What do elliptic functions of low orders look like? An elliptic function has
order 0 if and only if it is a constant function, according to Theorem 1.4. Next,
there are no elliptic functions of order 1, since that would entail having a residue
that is both zero because of Theorem 1.6 and non-zero because it’s at a pole
of order one. For order 2, there are two possibilities— one pole of order 1 with
residue 0 or two poles of order 1 with residues that are additive inverses of one
another. By Mittag-Leffler’s theorem, functions satisfying both cases exist.

For the first case, it is tempting to guess∑
ω∈L

1

(z − ω)2
,

but this series is neither absolutely nor uniformly convergent on compact subsets
of C\L, which means it is not necessarily periodic nor meromorphic. This guess
can be salvaged by introducing some correcting terms, and in fact this is what
Weierstrass himself did [2]. The correcting terms are analogous to those found
in the partial fraction decompositions of functions such as the secant.

2.2 Definition. The Weierstrass ℘ function with associated lattice L is given
by the following equation for z /∈ L:

℘(z) =
1

z2
+

∑
ω∈L\{0}

[
1

(z − ω)2
+

1

ω2

]
.

2.3 Theorem. The Weierstrass ℘ function is an even elliptic function.

Proof. It can be shown that the series is absolutely convergent and that the
series is uniformly convergent on compact subsets of C \ L. One method uses
estimation techniques from analysis and comparison with an integral. Absolute
convergence shows that the function is even, since replacing z with −z simply
rearranges the terms. Uniform continuity shows that the function is meromor-
phic, since the individual terms are meromorphic.

For periodicity on L, we first look at the derivative,

℘′(z) = −2
∑
ω∈L

1

(z − ω)3
,
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which is clearly periodic. We know that ℘(z) and ℘(z+ω1) differ by a constant
because they have the same derivative, and this constant can be seen to be 0
by taking z = 1

2ω1. Repeating this with ω2 completes the proof.

2.4 Definition. The Eisenstein series with associated lattice L is given by the
following equation for integers n > 3:

Gn =
∑

ω∈L\{0}

ω−n.

2.5 Theorem ([2, V.2.11]). The power series for ℘ centered at the origin is

1

z2
+

∞∑
n=1

(2n+ 1)G2n+2z
2n.

Proof. Using Taylor’s theorem on ℘(z)− z−2 gives the following coefficients:

cn =
fn(0)

n!
= (−1)n

(n+ 1)!

n!

∑
ω∈L\{0}

1

ωn+2
,

and those with an odd index are known to be zero because ℘ is even.

The region of convergence of this series is the largest disk centered at the
origin that does not contain any lattice points, with the origin removed.

2.6 Theorem (Representation Theorem, [2, V.3.1–3]). Every elliptic function
can be written as R(℘) + ℘′S(℘) for some rational functions R and S.

Proof. We divide the proof into three cases of increasing generality.

1. If f is an even elliptic function whose poles are contained in L, then f
can be written as polynomial in ℘ in the following way. Use the series
expansions f(z) = a−2nz

−2n + · · · and ℘(z) = z−2 + · · · to see that
f−a−2n℘n is an elliptic function with strictly smaller order than f . Repeat
this process on the new elliptic function until the order is reduced to zero.

2. If f is an even elliptic function with arbitrary poles, then f can be written
as a rational function of ℘ in the following way. For each pole zj /∈ L,
consider the map z 7→ f(z)(℘(z)− ℘(zj))

Nj , where Nj is an integer large
enough to remove the pole at zj . Doing this for each pole zj /∈ L leads to
an elliptic function whose poles are contained in L, namely

f(z)
∏
j

(℘(z)− ℘(zj))
Nj .

Part (1) shows that this new elliptic function can be written as a poly-
nomial in ℘, and dividing by the product explicitly gives f as a rational
function of ℘.
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3. If f is a completely arbitrary elliptic function, then it can be written as
R(℘) + ℘′S(℘) for some rational functions R and S in the following way.
In general, any function C→ C can be decomposed into its even and odd
parts as

f(z) = feven(z) + fodd(z)

= 1
2 (f(z) + f(−z)) + 1

2 (f(z)− f(−z)).

So we have feven = R(℘) by part (2), and we want fodd = ℘′S(℘). Since
fodd and ℘′ are both even functions, their quotient is even, and therefore
can be given as S(℘).

This theorem has analogues in the theory of Fourier series.

2.7 Theorem (Differential Equation for ℘, [2, V.3.4]). The ℘ function satisfies

(℘′(z))2 = 4(℘(z))3 − g2℘(z)− g3,

where g2 and g3 are complex constants depending on the lattice.

Proof. We apply the algorithm described in part (1) of the proof of Theorem 2.6
to the elliptic function (℘′(z))2, and we start by listing all the necessary ingre-
dients.

℘(z) = z−2 + 3G4z
2 + 5G6z

4 + · · ·
℘′(z) = −2z−3 + 6G4z + 20G6z

3 + · · ·
(℘(z))2 = z−4 + 6G4 + 10G6z

2 + · · ·
(℘(z))3 = z−6 + 9G4z

−2 + 15G6 + · · ·
(℘′(z))2 = 4z−6 − 24G4z

−2 − 80G6 + · · ·

Clearly subtracting 4(℘(z)3) from (℘′(z))2 will give an elliptic function with
lower order,

(℘′(z))2 − 4(℘(z)3) = −60G4z
−2 − 140G6 + · · · ,

and then adding 60G4℘(z) will give an elliptic function with order zero,

(℘′(z))2 − 4(℘(z)3) + 60G4℘(z) = −140G6 + · · · .

Since the right-hand side is an elliptic function with no poles, it is constant,
and therefore equal to simply −140G6. Taking g2 = 60G4 and g3 = 140G6

completes the proof.

This proves one direction between the two representations of elliptic curves.
The other direction is much more difficult to prove and amounts to showing
that g2 and g3 can be specified arbitrarily, as long as g32 6= 27g23 . See [5, §21·73].

Furthermore, not all meromorphic functions satisfy an algebraic differential
equation such as this. One well known example is the gamma function Γ, and
the proof of that is originally due to Otto Hölder in 1887.

There is much more to the theory of elliptic functions, so we conclude by
stating some further theorems without proof.
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2.8 Theorem (Addition Theorem, [2, V.4.1]). For any z, w /∈ L,

℘(z + w) =
1

4

(
℘′(z)− ℘′(w)

℘(z)− ℘(w)

)2

− ℘(z)− ℘(w).

This addition of inputs to ℘ corresponds to the addition of points on an
elliptic curve. Also, the addition theorems of elliptic functions are analogous to
those for circular functions. The first instance of such a theorem was discovered
by Fagnano in 1718, and this was generalized somewhat by Leonhard Euler in
1751 [4, 12.5].

2.9 Theorem ([2, V.4.4]). If x+ y + z = 0, then∣∣∣∣∣∣
℘(x) ℘′(x) 1
℘(y) ℘′(y) 1
℘(z) ℘′(z) 1

∣∣∣∣∣∣ = 0.

This implies Theorem 2.8, but is not implied by it.

2.10 Theorem (Abel’s Existence Theorem, [2, V.6.1]). There exists an elliptic
function with a prescribed lattice, poles, and zeros if and only if the sum of the
orders of the poles is equal to the sum of the multiplicities of the zeros, both
modulo the lattice.
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